Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Mini Rev Med Chem ; 21(8): 1025-1032, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33319657

RESUMO

In drug discovery, in silico methods have become a very important part of the process. These approaches impact the entire development process by discovering and identifying new target proteins as well as designing potential ligands with a significant reduction of time and cost. Furthermore, in silico approaches are also preferred because of reduction in the experimental use of animals as; in vivo testing for safer drug design and repositioning of known drugs. Novel software-based discovery and development such as direct/indirect drug design, molecular modelling, docking, screening, drug-receptor interaction, and molecular simulation studies are very important tools for the predictions of ligand-target interaction pattern, pharmacodynamics as well as pharmacokinetic properties of ligands. On the other part, the computational approaches can be numerous, requiring interdisciplinary studies and the application of advanced computer technology to design effective and commercially feasible drugs. This review mainly focuses on the various databases and software used in drug design and development to speed up the process.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Desenvolvimento de Medicamentos , Software , Animais , Humanos
2.
Braz J Microbiol ; 46(1): 7-21, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26221084

RESUMO

The remediation of polluted sites has become a priority for society because of increase in quality of life standards and the awareness of environmental issues. Over the past few decades there has been avid interest in developing in situ strategies for remediation of environmental contaminants, because of the high economic cost of physicochemical strategies, the biological tools for remediation of these persistent pollutants is the better option. Major foci have been considered on persistent organic chemicals i.e. polyaromatic hydrocarbons (PAHs) due to their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity. Rhizoremediation, a specific type of phytoremediation that involves both plants and their associated rhizospheric microbes is the creative biotechnological approach that has been explored in this review. Moreover, in this review we showed the significance of rhizoremediation of PAHs from other bioremediation strategies i.e. natural attenuation, bioaugmentation and phytoremediation and also analyze certain environmental factor that may influence the rhizoremediation technique. Numerous bacterial species were reported to degrade variety of PAHs and most of them are isolated from contaminated soil, however few reports are available from non contaminated soil. Pseudomonas aeruginosa , Pseudomons fluoresens , Mycobacterium spp., Haemophilus spp., Rhodococcus spp., Paenibacillus spp. are some of the commonly studied PAH-degrading bacteria. Finally, exploring the molecular communication between plants and microbes, and exploiting this communication to achieve better results in the elimination of contaminants, is a fascinating area of research for future perspective.


Assuntos
Bactérias/metabolismo , Biodegradação Ambiental , Plantas/metabolismo , Plantas/microbiologia , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Biotransformação
3.
Braz. j. microbiol ; 46(1): 7-21, 05/2015. tab, graf
Artigo em Inglês | LILACS | ID: lil-748232

RESUMO

The remediation of polluted sites has become a priority for society because of increase in quality of life standards and the awareness of environmental issues. Over the past few decades there has been avid interest in developing in situ strategies for remediation of environmental contaminants, because of the high economic cost of physicochemical strategies, the biological tools for remediation of these persistent pollutants is the better option. Major foci have been considered on persistent organic chemicals i.e. polyaromatic hydrocarbons (PAHs) due to their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity. Rhizoremediation, a specific type of phytoremediation that involves both plants and their associated rhizospheric microbes is the creative biotechnological approach that has been explored in this review. Moreover, in this review we showed the significance of rhizoremediation of PAHs from other bioremediation strategies i.e. natural attenuation, bioaugmentation and phytoremediation and also analyze certain environmental factor that may influence the rhizoremediation technique. Numerous bacterial species were reported to degrade variety of PAHs and most of them are isolated from contaminated soil, however few reports are available from non contaminated soil. Pseudomonas aeruginosa, Pseudomons fluoresens, Mycobacterium spp., Haemophilus spp., Rhodococcus spp., Paenibacillus spp. are some of the commonly studied PAH-degrading bacteria. Finally, exploring the molecular communication between plants and microbes, and exploiting this communication to achieve better results in the elimination of contaminants, is a fascinating area of research for future perspective.


Assuntos
Biodegradação Ambiental , Bactérias/metabolismo , Plantas/metabolismo , Plantas/microbiologia , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Biotransformação
4.
Braz J Microbiol ; 45(3): 1055-63, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25477943

RESUMO

Biodegradation and detoxification of dyes, Malachite green, Nigrosin and Basic fuchsin have been carried out using two fungal isolates Aspergillus niger, and Phanerochaete chrysosporium, isolated from dye effluent soil. Three methods were selected for biodegradation, viz. agar overlay and liquid media methods; stationary and shaking conditions at 25 °C. Aspergillus niger recorded maximum decolorization of the dye Basic fuchsin (81.85%) followed by Nigrosin (77.47%), Malachite green (72.77%) and dye mixture (33.08%) under shaking condition. Whereas, P. chrysosporium recorded decolorization to the maximum with the Nigrosin (90.15%) followed by Basic fuchsin (89.8%), Malachite green (83.25%) and mixture (78.4%). The selected fungal strains performed better under shaking conditions compared to stationary method; moreover the inoculation of fungus also brought the pH of the dye solutions to neutral from acidic. Seed germination bioassay study exhibited that when inoculated dye solutions were used, seed showed germination while uninoculated dyes inhibited germination even after four days of observation. Similarly, microbial growth was also inhibited by uninoculated dyes. The excellent performance of A. niger and P. chrysporium in the biodegradation of textile dyes of different chemical structures suggests and reinforces the potential of these fungi for environmental decontamination.


Assuntos
Aspergillus niger/metabolismo , Biodegradação Ambiental , Biotransformação , Corantes/metabolismo , Phanerochaete/metabolismo , Microbiologia do Solo , Compostos de Anilina/metabolismo , Aspergillus niger/crescimento & desenvolvimento , Aspergillus niger/isolamento & purificação , Concentração de Íons de Hidrogênio , Resíduos Industriais , Phanerochaete/crescimento & desenvolvimento , Phanerochaete/isolamento & purificação , Corantes de Rosanilina/metabolismo , Temperatura
5.
Braz. j. microbiol ; 45(3): 1055-1063, July-Sept. 2014. ilus, graf
Artigo em Inglês | LILACS | ID: lil-727038

RESUMO

Biodegradation and detoxification of dyes, Malachite green, Nigrosin and Basic fuchsin have been carried out using two fungal isolates Aspergillus niger, and Phanerochaete chrysosporium, isolated from dye effluent soil. Three methods were selected for biodegradation, viz. agar overlay and liquid media methods; stationary and shaking conditions at 25 °C. Aspergillus niger recorded maximum decolorization of the dye Basic fuchsin (81.85%) followed by Nigrosin (77.47%), Malachite green (72.77%) and dye mixture (33.08%) under shaking condition. Whereas, P. chrysosporium recorded decolorization to the maximum with the Nigrosin (90.15%) followed by Basic fuchsin (89.8%), Malachite green (83.25%) and mixture (78.4%). The selected fungal strains performed better under shaking conditions compared to stationary method; moreover the inoculation of fungus also brought the pH of the dye solutions to neutral from acidic. Seed germination bioassay study exhibited that when inoculated dye solutions were used, seed showed germination while uninoculated dyes inhibited germination even after four days of observation. Similarly, microbial growth was also inhibited by uninoculated dyes. The excellent performance of A. niger and P. chrysporium in the biodegradation of textile dyes of different chemical structures suggests and reinforces the potential of these fungi for environmental decontamination.


Assuntos
Aspergillus niger/metabolismo , Biodegradação Ambiental , Biotransformação , Corantes/metabolismo , Phanerochaete/metabolismo , Microbiologia do Solo , Compostos de Anilina/metabolismo , Aspergillus niger/crescimento & desenvolvimento , Aspergillus niger/isolamento & purificação , Concentração de Íons de Hidrogênio , Resíduos Industriais , Phanerochaete/crescimento & desenvolvimento , Phanerochaete/isolamento & purificação , Corantes de Rosanilina/metabolismo , Temperatura
6.
Indian J Microbiol ; 52(2): 197-202, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23729882

RESUMO

Rhizoremediation of organic xenobiotics is based on interactions between plants and their associated micro-organisms. The present work was designed to engineer a bacterial system having toluene degradation ability along with plant growth promoting characteristics for effective rhizoremediation. pWWO harboring the genes responsible for toluene breakdown was isolated from Pseudomonas putida MTCC 979 and successfully transformed in Rhizobium DPT. This resulted in a bacterial strain (DPT(T)) which had the ability to degrade toluene as well as enhance growth of host plant. The frequency of transformation was recorded 5.7 × 10(-6). DPT produced IAA, siderophore, chitinase, HCN, ACC deaminase, solubilized inorganic phosphate, fixed atmospheric nitrogen and inhibited the growth of Fusarium oxysporum and Macrophomina phaseolina in vitro. During pot assay, 50 ppm toluene in soil was found to inhibit the germination of Cajanus cajan seeds. However when the seeds bacterized with toluene degrading P. putida or R. leguminosarum DPT were sown in pots, again no germination was observed. Non-bacterized as well as bacterized seeds germinated successfully in toluene free soil as control. The results forced for an alternative mode of application of bacteria for rhizoremediation purpose. Hence bacterial suspension was mixed with soil having 50 ppm of toluene. Germination index in DPT treated soil was 100% while in P. putida it was 50%. Untreated soil with toluene restricted the seeds to germinate.

7.
Braz. j. microbiol ; 41(4): 922-930, Oct.-Dec. 2010. graf, tab
Artigo em Inglês | LILACS | ID: lil-595733

RESUMO

Several naphthalene and anthracene degrading bacteria were isolated from rhizosphere of Populus deltoides, which were growing in non-contaminated soil. Among these, four isolates, i.e. Kurthia sp., Micrococcus varians, Deinococcus radiodurans and Bacillus circulans utilized chrysene, benzene, toluene and xylene, in addition to anthracene and naphthalene. Kurthia sp and B. circulans showed positive chemotactic response for naphthalene and anthracene. The mean growth rate constant (K) of isolates were found to increase with successive increase in substrate concentration (0.5 to 1.0 mg/50ml). B. circulans SBA12 and Kurthia SBA4 degraded 87.5 percent and 86.6 percent of anthracene while, Kurthia sp. SBA4, B. circulans SBA12, and M. varians SBA8 degraded 85.3 percent, 95.8 percent and 86.8 percent of naphthalene respectively after 6 days of incubation as determined by HPLC analysis.

8.
Braz J Microbiol ; 41(4): 922-30, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24031572

RESUMO

Several naphthalene and anthracene degrading bacteria were isolated from rhizosphere of Populus deltoides, which were growing in non-contaminated soil. Among these, four isolates, i.e. Kurthia sp., Micrococcus varians, Deinococcus radiodurans and Bacillus circulans utilized chrysene, benzene, toluene and xylene, in addition to anthracene and naphthalene. Kurthia sp and B. circulans showed positive chemotactic response for naphthalene and anthracene. The mean growth rate constant (K) of isolates were found to increase with successive increase in substrate concentration (0.5 to 1.0 mg/50ml). B. circulans SBA12 and Kurthia SBA4 degraded 87.5% and 86.6% of anthracene while, Kurthia sp. SBA4, B. circulans SBA12, and M. varians SBA8 degraded 85.3 %, 95.8 % and 86.8 % of naphthalene respectively after 6 days of incubation as determined by HPLC analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...